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Abstract

We describe an efficient procedure for coupling a turbulent system to a transport equation which evolves the

equilibrium fields that drive and are driven by the turbulence. As an example, we apply the procedure to the coupling of

turbulence simulations of the two-dimensional Hasegawa–Wakatani equations to a one-dimensional transport equation

for the density n. Our coupling scheme uses implicit temporal discretization of the transport equation, rendering it
stable for arbitrarily large time steps. This allows the computation of turbulence with self-consistent steady-state

equilibrium profiles in a single time step of the transport equations and with a total computational time comparable to

that required for the turbulence code alone to reach a statistical steady state with fixed equilibrium profiles. Results are

presented for both local and non-local turbulence simulations. In the former, which requires running a separate tur-

bulence simulation for each transport grid cell, the transport flux CðxÞ depends on only local values of nðxÞ and n0ðxÞ; for
this case, C is expressed using Fick�s law, C ¼ �Dn0, with D > 0 prescribed by the turbulence. In the non-local simu-

lations, CðxÞ depends on the form of n over the entire domain. For such simulations we present two methods for
representing C that allow for anomalous flux transport, i.e., regions where the flux flows up the local gradient of n.
� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper describes a coupling scheme that connects two processes, each evolving on possibly vastly

different time scales. The processes are microscopic turbulence in a fluid, driven by macroscopic inho-

mogeneities of the averaged fields, and the relatively slow evolution of the averaged fields under the in-

fluence of the turbulence.
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Our motivating example is turbulent transport in toroidal magnetic-fusion-energy (MFE) plasmas, in

which turbulent fluctuations in the plasma density, temperature, electrostatic potential, etc., are driven by

gradients of the averages (‘‘profiles’’) of these fields. Turbulence is considered to have a significant impact

on the evolution of the averaged fields, and in particular to be the primary mechanism for transport of

energy from the interior of the plasma to the surrounding structures. Quantitative modeling of this tur-

bulence-transport system is thus essential to predict the performance of future large MFE machines. While

considerable progress has been made in the understanding of the relevant turbulent processes [1], the

derivation of analytic formulae for turbulent fluxes, valid for all relevant parameters and profiles, remains a
formidable task. Another possible approach to incorporating turbulence processes in transport simulations

is fitting databases of simulation [2] and/or experimental results. But this is also a daunting task if it is to

span all relevant parameter regimes, particularly if the turbulent transport is non-local. In this paper we

consider an alternative approach, which is direct coupling of turbulence and transport simulations, in a

fashion which allows simulation for very long times, in particular, steady state.

There are two major challenges in undertaking a numerical coupling of turbulence and transport. One is

how to resolve the two time scales efficiently. In a large tokamak, the transport evolves on a characteristic

confinement time of the order of seconds, while the turbulent system is characterized by eddy turnover
times of the order of a millisecond. The issue is complicated by the nature of the physical phenomena.

Transport is often adequately modeled as a diffusive process (quantities usually flow from regions of higher

to lower concentrations). On the other hand, turbulence is a rapidly changing, convective process. This

difference has numerical implications: turbulent processes are usually simulated with explicit methods, since

the details of the fluctuations must be followed. In contrast, for diffusive processes, which smooth out fast,

short-scale features, implicit schemes are more efficient, since they allow the use of large time steps (large in

comparison with the fastest normal mode). If times of the order of the transport time scale are to be

simulated, a brute-force approach, whereby both processes are advanced at the same, smallest, time step, is
prohibitively expensive. For relatively small tokamaks and for rather limited simulation times, such single-

time step simulations have been carried out, either by solving for total (average plus fluctuating) quantities

[3] or by solving separate equations for the fluctuating and average fields, e.g. [4].

The second challenge stems from the nature of the coupling: obtaining the transport flux C either

wholly or in part from a turbulence simulation brings a set of difficulties. Each realization of C is fraught

with noise. There is no a priori reason to assume that the fluxes are local, i.e., set by local values and

derivatives of the profiles. In fact, there are experimental suggestions to the contrary [5]. The uncertainty

of the analytic form of C can give rise to serious numerical difficulties. In particular, if C has regions of
anomalous behavior, e.g., anti-diffusivity, then expressing it in terms of a Fick�s law can lead to nu-

merical instability.

We have addressed both of these issues via a scheme which separately advances the turbulence and

transport equations on their own natural time scales, achieving implicitness in the transport equations

through a relaxed iteration procedure. We outline our approach to the problem by considering a generic

non-linear system,

otu þr � CðuÞ ¼ S; ð1Þ

where u is the vector of dependent variables (density, temperature, etc.). We use a bar to denote averages
(time, ensemble, or over some spatial dimensions), write u ¼ �uu þ ~uu where �~uu~uu ¼ 0, and split the equations into

their averaged and fluctuating parts:

ot�uu þr � �CCðuÞ ¼ �SS; ð2Þ

ot~uu þr � ½CðuÞ � �CCðuÞ
 ¼ S � �SS: ð3Þ
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Our method is predicated on the existence of disparate time scales s and ~ss for Eqs. (2) and (3), respectively,
and it will be most efficient when the solution of Eq. (2) is computationally much cheaper to obtain than

that of Eq. (3), e.g., if it is of lower spatial dimension. However, even if the solution of Eq. (2) is of

comparable expense to that of Eq. (3), there is still significant savings. If Dt and M define a time increment

and the number of steps necessary to evolve Eq. (2) to its characteristic time, then MDt ¼ s. The analogous
relationship for Eq. (3) is ~MMD~tt ¼ ~ss, where D~tt and ~MM are the time increment and the number of steps

necessary to evolve Eq. (3) to its characteristic time, and ~ss is the time characteristic of the fluctuations in Eq.
(3) to reach saturation, i.e., to approach a statistical steady state with fixed �uu. If one were to solve Eq. (1)
directly, then the number of steps needed to study profile evolution Mtot � s=D~tt � ~MM � s=~ss. This could be a
very large number since ~MM is itself big. 3

On the other hand, by separating Eq. (1) into two equations, we can solve each of them on its own

characteristic time scale. Each time step of Eq. (2) entails a separate evolution of Eq. (3) until it saturates.

Self-consistency is attained by iterating within each of the time increments of Eq. (2). At each iteration of

Eq. (2), a turbulent time step is taken. For each iteration of Eq. (2), the latest ~uu information from Eq. (3) is

used in constructing �CC and the latest �uu from Eq. (2) is used where �uu appears (e.g., the instability drives) in
Eq. (3). Each transport time step Dt is iterated to convergence; the number of iterates is typically set by the
requirement that the turbulence fluxes have saturated. Hence, each Dt time advancement yields a profile
self-consistent with the flux at the advanced time; that is, our scheme is fully implicit. (Options to run with a

mixture of advanced and old time step information are of course also available). Each Dt requires ap-
proximately ~MM iterative steps of Eq. (2) and ~MM time steps of Eq. (3). (Often, however, Eq. (2) is of lower

dimension, so its advancement is relatively fast; in such cases the iterative overhead is negligible.). Thus we

obtain Mtot � ~MM � M . As long as M  s=~ss, the method offers the possibility of a substantial improvement.
As long as Eq. (2) is of lower dimension than Eq. (3), no additional large matrix solves have been intro-

duced. Nor is there any need for Jacobian derivatives, which would be difficult to come by for this problem.
Furthermore, our fully implicit differencing of Eq. (2) is unconditionally stable. The only limitations im-

posed on Dt are due to accuracy considerations. In particular, by letting Dt ! 1 (so M ¼ 1), we reach the

saturated state in approximately ~MM steps.

The fully implicit discretization of Eq. (2) introduces complications. In this paper we restrict attention to

the case where only one scalar quantity is evolved. We let l denote the iteration index for advancing Eq. (2)
a single time step, with data exchanged with Eq. (3) each iteration as just described. Then each time in-

crement of Eq. (2) requires iteratively solving

ð�uul � �uuoÞ=Dt þ ox
�CCl ¼ �SS; ð4Þ

where �uuo represents the solution at the old time level. Unfortunately, �CC, a suitably averaged result from Eq.

(3), depends on �uul implicitly (in the mathematical sense). To achieve numerical implicitness, we nevertheless

give �CC a dependence on �uu. One might do this by expressing �CC as diffusion, �CCl ¼ �Dl�1ox�uul. However, in

order to deal with the possibility of flux locally running up a gradient, we write it instead as a blend of a

diffusive and a convective part. For a suitably chosen h between 0 and 1, we write

�CCl ¼ hð�Dl�1ox�uulÞ þ ð1� hÞcl�1�uul:

In this expression, D and c, respectively, play the roles of a diffusion coefficient and a velocity. Both are
constructed from the (suitably averaged) turbulent flux �CC and profile �uu (see Section 3). In Appendix A we

present an alternative approach which, by adding an appropriate function to �uu (an alias), guarantees that �CC
and the gradient of the dependent variable have opposite signs; then h can be chosen to be one.

3 Often there are important linear or non-linear frequencies in the problem much greater than ~ss�1. For fixed profiles, plasma

turbulence codes typically need ~MM on the order of a few thousand steps to saturate, and more to achieve tight statistical requirements.
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We conclude this section with a few remarks. The scheme is equivalent to a formal separation of scales,

and so, apart from the usual errors associated with numerical derivatives, it introduces an additional error

of order ~ss=s in the time-dependence of �uu.
If the iterations converge, the method is stable in time for arbitrary Dt. However, stability of the iter-

ations to advance a single Dt is a serious concern. Analysis of simple one-field models reveals that the
dependence of D on o�uu=ox introduces stability thresholds; stability for time steps large compared to a
diffusive Courant limit requires averaging over prior iterates, or equivalently, relaxation. The relaxation

required depends on the degree of non-linearity of Dðo�uu=oxÞ. A simple example is given in Section 2.
Given a stable iteration algorithm, the rate of convergence can also be an issue. Since in plasma tur-

bulence problems the Eq. (3) solver typically takes a few hundred to a few thousand time steps to compute a

reasonable average flux, there is not a very tight requirement on the convergence rate of the iteration al-

gorithm; in particular, a large amount of relaxation in constructing D (to accommodate a highly non-linear

D) can be tolerated. The coupling must not, however, significantly prolong saturation of the turbulence
code, or the method loses its advantage. Feeding the turbulence code somewhat noisy �uu�s may also be a
problem. In practice, we find that ~MM does not increase by more than a factor of 2–3, so that striking re-

ductions in Mtot are achievable.
Finally, we remark briefly on code-coupling mechanics. A turbulence code whose dependent variable is u

will of course have to be modified to solve Eq. (3) rather than Eq. (1). However, many low-amplitude

turbulence codes are already written for fluctuating quantities that are in some sense small; e.g., they have

already subtracted out ‘‘background’’ or ‘‘equilibrium’’ values. Such codes might retain in their calculations

averages of ‘‘~uu’’ that develop non-linearly. Such averages are, however, properly part of our �uu. If at t ¼ 0,
�~uu~uu ¼ 0, then �~uu~uu ¼ 0 for all time (since Eq. (3) averaged is o�~uu~uu=ot ¼ 0). In order to employ our coupling al-

gorithm, it is essential that a proper ~uu be used, and that the turbulence code which evolves Eq. (3) allow �uu
(normally considered a fixed input quantity) to be changed every D~tt time step.
In the following sections we apply the above scheme to a simplified system consisting of a 1D

transport equation for the background plasma electron density n, with the particle flux provided by a
2D simulation of plasma turbulence as modeled by the Hasegawa–Wakatani equations [6]. The pro-

cesses are coupled by: (1) the flux of n, which is a statistical average of a saturated quantity of the

turbulent system and (2) the background density n and its logarithmic gradient, which appear in co-

efficients of the turbulence equations; the gradient provides the source of free energy for the turbulence.

We have successfully used two independent codes [7,8] to simulate the turbulent flux. These codes are

explicit and therefore have stability conditions on their internal time steps. We first discuss transport–
turbulence coupling in the local limit, where we use the local turbulence code HAWC [7]. Here the

turbulence code is doubly periodic while the 1D transport domain has non-periodic boundary condi-

tions. For local problems, each x grid point of the transport equation corresponds to a separate 2D

turbulent domain. The physical assumption is that the turbulence depends on only the local average of

nðxÞ and dn=dx. In the regimes tested, the space- and time-averaged D is always positive, although

instantaneous space-averaged values may go negative. Section 2 describes the methods and numerical

results applicable to coupling to this local turbulence model. A model problem with an exact analytic

solution is presented in Section 2.1, and in Section 2.2 we couple the transport equation to HAWC.
Section 3 is devoted to the more difficult problem, coupling to non-local turbulence, for which CðxÞ
depends on the global form of nðxÞ. Here the possibility arises of non-local effects resulting in a flux

whose analytic structure cannot be cast in the form �Ddn=dx with DðnðxÞ; n0ðxÞ; . . . ; xÞ > 0. Indeed, we

present results of problems which violate the eikonal assumption used to derive our turbulence equa-

tions in order to obtain locally anti-diffusive behavior and so test our coupling method in this regime.

Section 3 describes our splitting of �CC into diffusive and convective parts. An alternative approach, the

addition of an ‘‘adaptive alias’’ density, is described in Appendix A. Concluding remarks and a dis-

cussion of future work is presented in Section 4.
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Alternative approaches to multiscale problems, which attempt a treatment in considerable generality,

can be found in [9] and references therein. The applicability of the methods to plasma turbulence, where

noise presents a serious complication, is not clear.

2. Problem description and local coupling

In this section, we first discuss some general features of our scalar transport equation and its coupling to
a turbulence model. We next present results for which the turbulent flux is given by an analytic function.

Then, in Section 2.2 we introduce the Hasegawa–Wakatani model turbulence equations, and present results

coupling them, within the local approximation, to the transport equation. Henceforth, we drop the overbar

symbol on space- (or ensemble-) averaged quantities and reserve its use to denote an average over itera-

tions; fluctuating quantities will be noted explicitly where needed.

We are interested in solving the equation

otn þ oxC ¼ S � cn ðS; cP 0Þ; ð5Þ

for 06 x6 Lx; ð6Þ

where S and c are, respectively, the source and absorption coefficients. The initial condition is njt¼0 ¼ n0ðxÞ;
and the boundary conditions are

ain þ biomn ¼ ci ði ¼ 0; 1Þ; ð7Þ

where om denotes the outward normal derivative. Standard conditions such as Dirichlet (fixed n) or Neu-
mann (fixed flux) are obtained with appropriate choices for ai; bi; ci.

The flux C is generally obtained numerically from another calculation, viz., the space, time, or ensemble

average, ~CC ¼ h~nnvxi, of the solution of the turbulence equations. The flux ~CC is the described �CC of Section 1.

Although it is an averaged quantity, in practice it is often quite noisy. This flux is used to define a diffusion

coefficient (cf. Fick�s law):

~DD � �~CC=oxn:

The flux C which is used in Eq. (5) is then written as C ¼ � �DDoxn, where �DD is obtained from ~DD by averaging

over previous iterates. (Alternatively, one can use �DD ¼ ��CC=oxn; see discussion of averaging schemes below.)
As discussed later in more detail, our linear transport-equation solver requires D > 0 and guarantees n > 0.

In this section, we restrict attention to problems where the flux flows down local gradients so that indeed
D > 0. The more general, possibly anti-diffusive case is deferred to Section 3.

The functional dependence of D on n or its derivatives is usually unknown. We now show that a de-

pendence of D on the derivative of n requires a fully implicit time-differencing scheme to advance Eq. (5).
Using m to denote the time level, consider the scheme

ðnm � nm�1Þ=Dt � oxðDioxnmÞ ¼ S � cnm ðwhere i ¼ m or i ¼ m � 1Þ: ð8Þ

For simplicity, let c ¼ 0. The semi-implicit scheme (i ¼ m � 1) can be unstable. To see this, let nm ¼ ne þ n̂nm,

where ne solves: �oxðDeoxneÞ ¼ S. Assume D ¼ D0ðoxnÞpnq, linearize about ne, and let n̂nm ¼ kmeinx. The in-

stability condition jkj2 > 1 is:

2ða � cÞDDt þ ðDDtÞ2 a2
�

þ b2 � c2 � d2
�
> 0; ð9Þ
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where

a ¼ qðp þ 1Þ nxx

n
þ qðq � 1Þ nx

n

� �2
� pn2;

b ¼ p2
nxx

nx

�
þ qðp þ 1Þ nx

n

�
n;

c ¼ n2;

d ¼ � p
nxx

nx

�
þ q

nx

n

�
n:

Here subscripts denote partial derivatives and superscript ‘‘e’’ on D and n has been dropped.
For short-wavelength perturbations, n � ðnx=nÞ; ðnxx=nxÞ, and positive Dt, this criterion reduces to

ðp þ 1Þ½�2þ ðp � 1Þn2DDt
 > 0. This criterion is satisfied (instability) for p < �1 and any Dt, and also for
p > 1 so long as n2DDt > 2=ðp � 1Þ. For jpj < 1 we have short-wavelength, long-time step stability (but not

necessarily stability for shorter time steps and longer wavelengths), and for jpj ¼ 1 the answer depends on

the sign of nxx=nx and the sizes of nxx=nx; nx=n, and q.
For the particular case of constant diffusion (p ¼ q ¼ 0), we have a ¼ b ¼ d ¼ 0, c ¼ n2, and the in-

stability criterion becomes �2v � v2 > 0, where v � n2DDt; this is not satisfied for any n or any positive Dt
and so the scheme is stable.
On the other hand, for the Hasegawa–Wakatani equations, a scaling analysis (see [10]) indicates that for

large values of the parameter a (defined in Section 2.2 below, just after Eq. (19)), p ¼ �q ¼ 2, whereas for

small a, p ¼ �q ¼ 4=3, and numerical scans indicate a smooth dependence in between. Hence, for all a we
have large-n instability for n2DDt � 1.

On the other hand, if the scheme is fully implicit [i ¼ m in Eq. (8)], then Dt is limited only by accuracy
considerations. This result was dramatically exhibited in one of our test problems. We used p ¼ �q ¼ 2,

started with a constant initial state, an initial Dt ¼ 10�12, and let n relax to an equilibrium. The code

increased Dt by a factor of 2 if n varied less than a factor of 2 from cycle to cycle. Using Eq. (8), and
i ¼ m� 1, after 513 time cycles, t had grown to 0.00234 but a time history of Dt showed increases fol-
lowed by sharp drops indicating sudden changes in n. A closer inspection of n showed oscillatory be-

havior with a wavelength equal to twice the mesh width, a sign of numerical instability. However, when

the same problem was run fully implicitly (i ¼ m), after 34 cycles Dt ¼ 0:0170 ¼ 234 � 10�12; i.e., despite

the significantly larger steps, Dt grew by the maximum allotted amount with no deleterious behavior of

the solution. Henceforth, in all our discussions we use i ¼ m. Of course, this requires that Eq. (8) be
iterated at each time level.

We now describe the scheme for coupling Eq. (5) to a turbulence simulation which computes C. We are
interested in the case s � ~ss, where s is a characteristic time for Eq. (5) and ~ss is the non-linear saturation
time for the turbulent flux. The respective equations are advanced with different time steps. Equation (5) is

evolved in steps of size Dt and the turbulence code with a significantly smaller D~tt. For each transport time
step, the turbulence code is advanced many D~tt time steps until a saturated statistical steady state is reached.
The turbulent time steps are iterative increments for the transport time step. Introducing lP 1 as the it-

eration index, Eq. (5) is repeatedly advanced using Eq. (8), with

nm ¼ nm;l and Di ¼ �DDm;l�1; ð10Þ

where we remind the reader that m is the transport time step index. That is, we iterate on the time-advanced

density nm and evaluate the diffusion coefficient using the previous (time-advanced) iterate. The ensemble-

averaged quantities (‘‘profiles’’) appearing in the turbulence equations are not evolved by the turbulence
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code, but rather, are set at each D~tt from the latest iterate of the transport equations (or from an average

over recent iterates).

We consider various possibilities for computing �DDm;l�1 from the turbulent flux data. Each time cycle D~tt
the turbulence code returns a value for the diffusion coefficient ~DDm;l�1. The ~DD coefficients are used to

construct an averaged value. Two averaging schemes were investigated in some detail and are reported on

below. These schemes are just representative possibilities; the important point is that in general some

scheme to stabilize the iterations is necessary.

One averaging scheme smoothly relaxes D to the average of the iterates. First we choose a large number
N (¼ 100 by default) and define

�DDm;l ¼ maxð0; ð1=NÞ
Pl

|¼1
~DDm;| þ ððN � lÞ=NÞ �DDm�1Þ if l < N ;

maxð0; ð1=lÞ
Pl

|¼1
~DDm;|Þ if lPN ;

(
ð11Þ

where �DDm�1 is the converged D from the previous transport step. Since Eq. (8) is solved by iteration, we do

not check for convergence until lPN . For such l�s, Eq. (11) gives equal weight to all of the ~DDm;l.

Since the transport iterates correspond to turbulence-code time increments D~tt, the early ~DDm;l (low l),
which are statistical fluctuations about some transient, may differ significantly from the ~DDm;l with large l.
The later ones are fluctuations about the desired mean �DDm. Thus, it may be better to weigh them more

heavily. To this end, we also use the alternate scheme: for some large N with lPN and a ¼ 1� 1=N , set

�DDm;l ¼ max 0;Al

Xl

|¼0
al�| ~DDm;|

 !
; Al ¼ ð1� aÞ=ð1� alþ1Þ: ð12Þ

It is easy to show that Eq. (12) is a form of relaxation,

�DDm;l ¼ Al
~DDm;l þ ð1� AlÞ �DDm;l�1:

Furthermore, liml!1 Al ¼ 1� a. For l < N , the iterations are typically begun as in Eqs. (11).
The local coupling results presented in Section 2.2 were obtained using Eqs. (11). The non-local coupling

results in Section 3 were obtained using Eq. (12). We have also successfully used Eqs. (11) for non-local
problems, but, as expected, with somewhat slower convergence. We perform a large-wavenumber stability

analysis of either scheme as follows. Assume D is of the form given following Eq. (8), and denote with

overbarðlÞ any averaging operator linear in the iterates j, 16 j6 l (thus, we consider lPN in the schemes

above). We perturb about a stationary (to iterations) solution of Eq. (8) and write nm;l ¼ nm þ dnðlÞ. Then,
for large perturbation wavenumbers, o �DDm;l=ox ¼ �k2ðoDm=on0ÞdnðlÞ, where n0 ¼ onm=ox and k is the per-
turbation wavenumber. Then the perturbation of Eq. (8) becomes

pdn
ðlÞ þ dnðlþ1Þ ¼ 0; ð13Þ

where p was introduced just below Eq. (8). To analyze the iteration scheme of Eq. (11), subtract ðl � 1Þ=l
times Eq. (13) with l � 1 substituted for l from Eq. (13) as it appears. Then, for l > N , upon using Eq. (11),
we find dnðlþ1Þ ¼ dnðlÞ½1� ð1=lÞ � ðp=lÞ
, which indicates convergence for p > �1, though the convergence
becomes very slow for large l. For the scheme given by Eq. (12), we seek a solution for dnðlÞ of the form
dn0k

l. Then dn
ðlÞ ¼ Aldn0ðklþ1 � alþ1Þ=ðk � aÞ. If we pessimistically assume that the scheme is weakly

convergent or non-convergent so that ðjkj=aÞl � 1 for large l, then in that limit dn
ðlÞ � dn0k

lþ1

ð1� aÞ=ðk � aÞ, and Eq. (13) yields k � 1� ð1þ pÞ=N . Thus we have stability provided that p > �1 and
N P minð1; ð1þ pÞ=2Þ. (However, one should be cautious in applying this result to the actual coupled code
algorithms described in Sections 2 and 3 since the above analysis effectively assumes a converged turbulence

calculation, so that D is uniquely a function of the present profile and not of the iteration history, whereas
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the coupling schemes employed simultaneously iterate the transport equation and advance the turbulence

equations.)

Finally, we remark that having defined these two averaging schemes, one could apply them instead to the

flux and to the profiles, and then compute an average diffusion coefficient according to �DDm;l ¼ ��CCm;l=oxn
m;l
.

Since the division is now by an averaged quantity, �DD is less subject to large changing iterates occasioned by

oxnm;l passing through zero. For cases with gradients that are either small or change sign in x, this can be
important. The stability analyses given in the preceding paragraph apply without alteration to this modified

definition of the average diffusion coefficient.
Now we turn attention to the spatial discretization. The turbulence models are treated as a ‘‘black box’’.

For Eq. (5), the spatial discretization is done using finite elements. The piecewise-linear test functions satisfy

/iðxjÞ ¼ dij; hence, n has the representation

nmðxÞ ¼
X

nm
j /jðxÞ: ð14Þ

Eq. (8) is multiplied by a test function and integrated over the domain. The transport term is integrated by

parts and the undifferentiated terms are lumped. This leads to a linear system for the unknowns nm
j ,

Mnm ¼ y:

If nm�1 and Sj are both non-negative, so is y. By construction, M is a symmetric M-matrix, which assures

that with these conditions and appropriate boundary conditions nm is non-negative [11].

The scheme is conservative. This allows us to compute (and account for) quantities such as the initial

and final masses, the total mass flux, the total source, and the total mass absorbed, i.e., discrete ana-

logues of

N 0 ¼
Z
dxn0ðxÞ; NðtÞ ¼

Z
dxnðx; tÞ; GðtÞ ¼

Z t

0

dt0 CjLx
x¼0;

RðtÞ ¼
Z t

0

dt0
Z
dxS; and BðtÞ ¼

Z t

0

dt0
Z
dxcn:

At the end of any time step, to machine accuracy,

NðtÞ þ BðtÞ ¼ N 0 � GðtÞ þ RðtÞ:

We now discuss one reason for the max function in Eqs. (11) and (12). Because the applied iteration-

averaging described above does not completely eliminate noise in the diffusion coefficient ~DDm;l�1, �DDm;l�1

might turn out to be negative. Introducing the max function in combination with lumping guarantees the
M-matrix property for each of the M �s used in the iterative steps.
We caution the reader that it is easy to generate a singular matrixM if C ¼ �Drn and D is allowed to be

negative. The �CC � rn < 0 condition is also necessary to guarantee certain expected properties of transport

equations for positive quantities, viz., that maxima (minima) decrease (increase), that nP 0, etc. To see this,

consider the equation otn ¼ �oxC where Coxn > 0. Assume that nðxÞ ¼ nð�xÞ, nð0Þ ¼ oxnð0Þ ¼ 0, and

oxxnð0Þ > 0. A Taylor series expansion shows that

nð0;DtÞ ¼ �DtoxCjt¼0;x¼0 þOðDt2Þ ¼ �ðDt=DxÞðC1=2 � C�1=2Þ þOðDx2DtÞ þOðDt2Þ < 0;

where the inequality is a result of C�1=2 � oxn > 0. The local minimum decreased causing a negative density.

Nevertheless, we do anticipate scenarios in which the flux displays locally anomalous behavior, i.e.,

regions where C � rn > 0, particularly if the flux is responding to, say, a spatially averaged (x as well as y),
rather than a local gradient. This is the subject of Section 3.
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2.1. Analytic test problem

We present results for an analytically tractable problem, the computation of the steady-state solution of

Eq. (5) in which we set

c ¼ 0; C ¼ �l�2n oxn; ln ¼ jn=oxnj: ð15Þ

In Eq. (6) we set Lx ¼ 1: The boundary conditions, Eqs. (7), are imposed by setting a0 ¼ c0 ¼ b1 ¼ c1 ¼ 0

and b0 ¼ a1 ¼ 1: The initial condition is n0ðxÞ ¼ 1: The source is a step function,

SðxÞ ¼ S0 x < d;
0 otherwise;

�
S0 ¼ 1; d ¼ 0:1:

This models the decay of a constant density due to the homogeneous boundary condition imposed at x ¼ 1.

The source injects particles in x6 0:1. The diffusion is non-linear; the diffusion coefficient D / ðoxnÞ2.
Hence, in regions where n ¼ const., D ¼ 0. Therefore, in those regions, otn ¼ 0; hence, no change in n.
Initially, we expect the evolution to consist of a density increase for x < 0:1 (because of the source) and a
decay near x ¼ 1. For a time, the two regions (of decreasing and increasing density) are independent of each

other since they are separated by a central region where oxn ¼ 0.

The numerical solution is displayed in Fig. 1 in which we plot nðxÞ for several values of t. Curves 1, 2,
etc., respectively, represent n for t � 10�5, 10�4, 10�3, 10�2, and 2� 10�2. For t6 10�3, we see the non-linear
diffusion of the cooling wave. Our choice of problem implies that the transient wave is self-similar, a

phenomenon discussed in [12]. Indeed, if C ¼ �D0ðoxn=nÞ2oxn, by choosing the similarity variable,

n ¼ ð1=64D0Þx4=t; ð16Þ

and examining the solution near x ¼ 1, Eq. (5) is reduced to the ODE,

nv 12n
dv
dn

�
þ 9v þ 4nv2

�
¼ �1; v ¼ 1

n
dn
dn

:

The wave is characterized by the constant value of the wave front nf . Inverting Eq. (16) gives the temporal

dependence of the spatial position,

Fig. 1. Solutions nðx; tÞ vs. x for analytic test problem, for several values of t.
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xf ¼ nf t
1=4:

Assuming the numerical solution to be correct at t ¼ 10�5, i.e., xf ðt ¼ 10�5Þ � 0:215 (when measuring from
the right), we find nf ¼ 3:339. This implies the dependence of the front should be,

The position at t ¼ 10�4 and 10�3 agrees with Fig. 1. At t ¼ 10�2, the analysis no longer holds since by this

time the cooling wave has interacted with the source region and the left-side boundary condition.

The effect of the source is not obvious from Fig. 1. At t ¼ 10�3, S has only raised the original density,
n ¼ 1, by the amount, t � S ¼ 10�3 � 1 and this small amount is just barely visible in the figure. However, by
t ¼ 10�2, the cooling wave has already interacted with the source. The source is most evident in the steady

state solution,

neðxÞ ¼ S0d
27D0

ðLx � xÞ3 if x < d;

Lx � d þ 0:75ðd � x4=3=d1=3Þ
h i3

otherwise:

8<
:

Without a source, all of n would flow out of the domain (let S0 ¼ 0 in the above equation).

2.2. Local approximation

The plasma turbulence model we use to illustrate our coupling technique is a numerical solution of the

2D (x; y) Hasegawa–Wakatani equations [6] for a perturbed density variable Np and the z-component of the
vorticity f:

otf þr � ðvfÞ ¼ að/ � NpÞ þ lr2f;

otNp þr � ðvNpÞ ¼ að/ � NpÞ � joy/ þ mr2Np:
ð17Þ

Here, the electric-field-drift velocity v ¼ ẐZ �r/, / is the electrostatic potential normalized to Te=e, the
vorticity f is related to / via f ¼ r2/, and j � �ox logNb. Time is in units of inverse ion cyclotron fre-
quency Xci ¼ eB=mic, and distance is in units of qs � cs=Xci, where the sound speed c2s ¼ Te=mi. The density

variable Np is related to the total physical density N and a specified stationary background Nb by:

Nðx; y; tÞ ¼ NbðxÞð1þ Npðx; y; tÞÞ: ð18Þ

We note that Np can itself have an average, and hence we separate it into its averaged and fluctuating parts:

Npðx; y; tÞ ¼ nðx; tÞ þ ~nnðx; y; tÞ; ð19Þ

with h~nni ¼ 0, where h�i denotes the averaging operator. Of the various density variables just introduced, N
must be positive, and we consider only positive Nb.

In 2D, the coupling coefficient aðxÞ ¼ k2kTe=memei / 1=Nb, where mei is the electron–ion collision frequency
and kk is a chosen parallel wavenumber. As a ! 1;Np � / goes to zero; i.e., the electrons become fully

adiabatic. In Eq. (17), the term �joy/ is responsible for the growing modes, and is a source of energy (e.g.,

h/2i) in the equations. For local calculations and ordinary profiles, j > 0; in general, though, jðxÞ can be of
either sign. The small diffusive terms proportional to l and m represent very fine-scale dissipative processes
and are customarily included in simulations in order to remove energy from the highest wavenumbers,

t 10�5 10�4 10�3 10�2

1� xf 0.785 0.618 0.321 �0:2
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where it arrives via mode-coupling. Without the l and m terms, energy accumulates at high wavenumbers;
these terms are necessary to achieve (fluctuating) steady states.

Periodic boundary conditions in y are applied to the system, and averages are defined by

hf i � 1

Ly

Z Ly

0

dy f : ð20Þ

Eq. (17) were originally developed by Hasegawa and Wakatani [6] and have been extensively studied,
e.g., in [13]. We note here that they follow from the two-fluid Braginskii equations [14] by assuming a

uniform, constant magnetic field, using drifts for perpendicular velocities (low-frequency approximation),

neglecting electron inertia, assuming a spatially and temporally constant electron temperature, neglecting

the ion parallel velocity, and assuming Np  1 but r?Nb � r?Np.

In the local approximation, the fluctuations are assumed to respond only to the local macroscopic av-

eraged fields and their x derivatives. A necessary condition for this to be a good approximation is that the

radial (x) correlation length for the turbulence be short compared to the equilibrium scale length (as assumed

in the derivation of Eqs. (17)). Hence a separation of scales has been formally carried out in x; a transport
equation in the form of Eq. (5) evolves the background Nb with a flux C obtained by solving Eqs. (17). At

each point that the flux is needed, an independent homogeneous turbulence calculation that knows only

about the local value and gradient of Nb is performed. Thus, the x-domains of the transport and turbulence
simulations differ, and to avoid confusion we introduce X and Y for the latter. In a given simulation of the

turbulent Eqs. (17), a and j are now spatial constants; boundary conditions are periodic in X as well as Y ;
solutions are translationally invariant, i.e., the turbulence is homogeneous; and averages are defined by

hf iL � 1

LXLY

Z LY

0

dY
Z LX

0

dX f ðlocal approximationÞ: ð21Þ

Performing an X–Y average on Eqs. (17) shows that for the local version (uniform a; j), due to periodicity
in X , if hniL and h/iL vanish at t ¼ 0, they remain zero (though the instantaneous n and h/i are non-zero);
then hniL must also vanish. Thus, the local version of Eqs. (17) provides a suitable candidate for coupling,
as discussed in Section 1.

We now describe the details of coupling Eq. (5) to the code HAWC, described in [7], which we use to

solve Eqs. (17) in this weakly varying-background limit. First note that HAWC makes use of a scale-in-

variance transformation that exists within the local approximation: if we transform to hatted variables

t̂t ¼ jt, x̂x ¼ x, /̂/ ¼ /=j, n̂n ¼ Np=j, and âa ¼ a=j, then j drops out of the equations, and we see that there is
only a one-parameter (âa) family of solutions to Eqs. (17). (The coefficients l and m are kept small enough
that they do not affect the solution away from the boundaries.) So we proceed with Eqs. (17) written in

hatted variables, i.e., with j ¼ 1.

Eq. (5) is discretized into N zones. For each transport Dt, we run N separate HAWC simulations iter-

atively with the transport Eq. (5), and proceed until each of the HAWC simulations saturates. The HAWC

runs are on a domain defined by the rectangular box

Xmax ¼ Ymax ¼ 10p:

Each problem is given random but small initial conditions. Each HAWC problem has its own constant (in
space) value of âa; and at each iteration with transport (each HAWC time step D~tt) all the âa�s are updated as
follows. Defining ln � �j�1, for each transport mesh width ðxj�1; xjÞ, we compute from the transport�s
density profile n (i.e., Nb)

ln;j�1=2 ¼ ð1=2Þðnj þ nj�1Þðxj � xj�1Þ=ðnj � nj�1Þ;

and then set âaj�1=2 ¼ aj�1=2lj�1=2 as input to HAWC; here, aj�1=2 ¼ ð1=2Þðaj þ aj�1Þ, where aj / 1=NbðxjÞ.
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The flux �CC actually used in the transport equation is obtained from the space average ~CC ¼ �csNb �
hNpoy/iL ¼ �csNbj2hn̂noY /̂/iL of the HAWC solutions. Defining ~DDH ¼ hn̂noY /̂/iL, we use

�CCl ¼ �csNb

�DDl�1
H

�lll�1n

oxnl

nl�1 ; ð22Þ

where the bars on the right-hand side refer to the iteration-averaging scheme Eq. (11).

Before proceeding to a discussion of the results of the coupled-calculation simulations, we briefly explore

the statistical and convergence properties of the uncoupled HAWC code.
In Fig. 2 we display a HAWC time history for âa ¼ 0:1, for 1000 time steps. Note that �DDH ðâa ¼ 0:1Þ � 1

and that even for large l, the fluctuations vary between 0.5 and 1.5. This behavior is typical for other âa. One
important aspect of �DDH ðâaÞ (for the âa considered) is �DDH > 0. This is fortunate since �DDH is the diffusion

coefficient. However, for some âa we did see realizations for which ~DDl
H ðâaÞ6 0.

In the interest of speed, we chose to run HAWC for the coupled problems below, and in Fig. 2 above, on

a limited 32� 32 ‘‘grid’’ (HAWC is a pseudo-spectral code). If HAWC is run with enough resolution

(>64� 64) throughout the range 0:016 âa6 1, �DDH can be approximated by the Pad�ee fit

DPad�ee ¼ a1½âað1þ a2âa2Þ
�1=3; a1 ¼ 0:58; a2 ¼ 2:9: ð23Þ

This approximation has the expected behavior for large and small âa, viz., if âa  1, �DDH / âa�1=3, and if âaJ 1,
�DDH / âa�1 [10].

The dependence of �DDH on âa for the 32� 32 runs is displayed in Fig. 3. Curve 1 is the average of 1000

realizations. Curves 2 and 3, are respectively, �DDH� one standard deviation and curve 4 is Eq. (23). For

0:16 âa6 1:0, curve 4 (Eq. (23)) is a poor fit to our low-resolution HAWC runs. A better analytic fit for this
resolution is provided by another approximant,

log10 DA ¼ �0:7� 0:84b � 0:14b2; b ¼ log10 âa: ð24Þ

We display Eq. (24) as curve 5 in Fig. 3. Except for the bump at âa � 0:04, curve 5 is a very close fit to
curve 1.

We now turn to the results of the coupled calculations.

Fig. 2. Time step history of flux from HAWC.
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For the numerical test, except for setting n0 ¼ 0:1 and c1 ¼ 0:001 (see Eq. (7)), the initial and boundary
conditions and the source are the same as in the previous section. The main difference between this problem

and the one in Section 2.1 is that here the flux is given by Eq. (22).

The results for different t are displayed in Fig. 4. Note the similarity to Fig. 1. At t � 0:016, the cooling
wave has reached the source region. The initial increase of n for small x is consistent with the source value
and the elapsed time S0t. After t � 0:016, the source particles diffuse outwards until a steady-state is
reached, curves 7 and 8.

To check the results, we make another run in which ~DDH is replaced by DA (see Eq. (24)). The result is

nearly identical to the turbulence run. We present a comparison in Fig. 5 which plots the time history

nðx ¼ 0; tÞ of both simulations. Curve 1 is the HAWC result and curve 2 corresponds to using DA. For

t6 10�2, the curves exhibit an increase in n due to the source. The rise is followed by a decay to the

Fig. 4. Solutions nðx; tÞ vs. x-grid index from HAWC for several values of t. Curves 1–7 correspond to, respectively, t ¼ 1:5� 10�5,

1:27� 10�4, 1:02� 10�3, 0.0164, 0.131, 1.05, and 16.8.

Fig. 3. Dimensionless diffusion coefficient �DDH vs. âa. Curve 1 is the average of 1000 realizations. Curves 2 and 3 are, respectively, �DDH�
one standard deviation. Curves 4 and 5 are fits given by Eqs. (23) and (24), respectively.
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equilibrium value. This validates our technique for extracting the correct average from the fluctuating

diffusion coefficient.
The turbulence code HAWC behaves best if âa is restricted to the range 0:01 < âaK 1. To comply, our

calls to HAWC (to determine ~DDH ) are made with the modified value,

âaH ¼ maxð10�2;minð1:; âaÞÞ:

The modification is of no consequence for the steady-state transport solution since the problem is designed

so the equilibrium âa fall within the restricted range. However, the transient âa range over all positive

numbers. To illustrate the differences and to demonstrate how our coupling scheme converges we present

Figs. 6 and 7. Fig. 6 shows the l-iteration history at the transient time t ¼ 0:01638 at x ¼ 0. Curve 1 is âa;
note that it is >1. Curve 2 is âaH and curve 3 is 5� ~CCl. After 110 iterations, the averaged flux satisfies our

Fig. 6. Iteration history of âa ¼ a=j (curve 1), limited parameter âaH (curve 2), and five times the flux ~CCl (curve 3). The iterations are

within a transport time step at transient time t ¼ 0:01638 (see Eq. (22)).

Fig. 5. Comparison of solution n at x ¼ 0 vs. log(time) with flux obtained from HAWC (curve 1) with that obtained from fit Eq. (24)

(curve 2). i ¼ 1, 2,. . .,7 correspond to curves 1–7 in Fig. 4.
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convergence criterion and we move on to the next transport time step. The analogous steady-state iteration

history is shown in Fig. 7 for which t ¼ 134:2. Curve 1 is âa; during the iteration its value hovers about 0.8;
hence, âaH ¼ âa. Curve 2 is 3� ~CCl; despite its fluctuations, the method homes in on the average.

3. Non-local coupling

In this section we describe the coupling between a transport equation and a non-local turbulent system,

i.e., the general case outlined in Section 1. The turbulence is again modeled by Eqs. (17), but now the input

parameters a and j (the coefficients responsible for the growth of the turbulent eddies) are allowed to vary
with x, in accordance with the density profile Nb from which they are defined. Formally, Eqs. (17) follow

from a multiple-length-scale expansion of the Braginskii equations, with the parametric dependence on the
(long) equilibrium spatial scale retained. In our numerical examples we will push these equations beyond

their limits of validity by choosing situations where the equilibrium and fluctuation scale lengths are

comparable and where Np � 1 in order to test how well the coupling algorithms work under these cir-

cumstances. In these simulations our transport and turbulence equations are the averaged and fluctuating

parts of the same primitive equations. In contrast with the previous section, non-local coupling requires

only a single copy of the turbulence equations, solved on the same spatial domain as the transport equation.

The turbulent medium is homogeneous in y, and spatial averages are as in Eq. (20):

hf i � 1

Ly

Z Ly

0

dy f ðnon-local averageÞ;

leaving quantities that are functions of x and t.
The main complication specific to coupling to non-local turbulence is that the turbulent eddies can

assume a scale comparable to that of the equilibrium variations, implying a flux which is in general not a

function of only local quantities. In particular, CðxÞ need not necessarily flow down the gradient of the

transported quantity. The thermodynamic principle one would derive from Eqs. (29) and (30) below would
yield a single constraint, over the whole domain, on the direction of the net flow, and involve global in-

tegrals. If the flux is non-local (does not depend only on local fields and derivatives), we do not expect there

to be any local thermodynamic principle. Stated another way, if the flux is non-local, it will respond to

Fig. 7. Iteration history within a transport time step (see Eq. (22)) of âa ¼ a=j (curve 1) and three times the flux ~CCl (curve 2) at steady

state (t ¼ 134:2). At this time âaH ¼ âa.
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properties of the profile over some range of positions and so need not flow everywhere down the gradient.

This forces us to modify our scheme to allow for anti-diffusive behavior. The modifications are in keeping

with certain desired properties of the numerical solution: that it remain positive and that it be conservative.

We accomplish this by expressing C as a linear combination of rn and cn where c plays the role of a
convective velocity.

Consider a generic transport equation for a ‘‘density’’ f ,

1

g
otf þ oxC ¼ S � of ; ð25Þ

where gðxÞ, oðxÞ, and Sðx; tÞ are known functions. In order to avoid any Dt stability restrictions, fully
implicit time stepping is used. If m denotes the time level, we write

ðf m � f m�1Þ=gDt þ oxC
m ¼ Sm � of m: ð26Þ

As before, we use linear finite elements and lump all but the transport term, e.g.,Z
dx/jf

m=g ! f m
j ðh=gÞj�1=2
h

þ ðh=gÞjþ1=2
i
=2;

where hj�1=2 ¼ xj � xj�1 is the mesh width. As for the local case, in order to obtain a self-consistent ad-

vanced-time step flux, Eq. (26) is solved by iterating it with the temporal steps of the turbulence code. For

the non-local coupling, we use the code HAWCX, described by Xu et al. [8]. If l is an iteration index, f m;l is

the unknown quantity. Henceforth, we omit the time index m. In addition to f l, we also keep track of a

running average �ff l, defined as in Eq. (11) (or alternatively, (12)). The average has dual use. First, the

gradient of �ff l is used to compute the modifications to HAWCX�s coefficients. Secondly, since f l solves a

linear system, self-consistency (convergence of the iterations) requires that �ff l satisfy the linear system to
some tolerance.

The iteration cycle begins by defining the averaged density gradient that drives the turbulence (see Eq.

(33) below), using �ff l�1 or f l�1. HAWCX returns with the next noisy iterate for the flux ~CCl. This iterate is

folded into an average flux �CCl according to Eq. (12). In the results, we iterate at least 2000 times and use

a window size N P 500. Proper choices for N and the total number of iterations allowed are problem

dependent. If the turbulence code uses a time step which is small compared to the characteristic time

scales (linear growth times, characteristic wave periods, and decorrelation times), then successive ~CC it-

erates differ little from each other and very many l-iterations are required in order for the turbulence
code to saturate (this is the case for HAWCX). It is also difficult to determine when HAWCX has

saturated since there are often waves with low frequencies traveling across the domain – even after

saturation.

Once �CCl is known, it is used to define zone-centered ‘‘diffusion’’ and ‘‘velocity’’ coefficients,

Dl�1
j�1=2 ¼ ��CCl

j�1=2=dxf l�1
j�1=2 and cl�1

j�1=2 ¼ �CCl
j�1=2=f

l�1
j�1=2: ð27Þ

D and c are the coefficients that would result if the turbulence-code flux were represented as fully diffusive or
fully convective, respectively; for use in the transport-code, we will use a weighted combination, to be

described shortly below, of these two representations, with the weight chosen for numerical convenience

and the combination guaranteed (at the end of the time step) to sum to the turbulence-code�s flux. We
emphasize that there need be no connection between the weight or either of these representations and an

analytic expression for the dependence of the turbulent flux on the fields; if the flux in fact depends, for

example, on higher derivatives or on integrals of n, this does not result in an error in our transport-equation
solution.
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The zone-centered dxf and f terms in Eq. (27) are obtained from the nodal values �ff l�1
j

dxf l�1
j�1=2 ¼ ð �ff l�1

j � �ff l�1
j�1 Þ=hj�1=2 and f l�1

j�1=2 ¼ ð �ff l�1
j þ �ff l�1

j�1 Þ=2:

We could also define an upwinded velocity by looking at sign(�CCl
j�1=2) and let f l�1

j�1=2 ¼ �ff l�1
j if the flux is

negative. The D and c coefficients actually used should be limited to keep the problem well posed for the

numerical linear transport-equation solver. For example, assume that Dmin and Dmax are two non-negative

numbers limiting the diffusion, and let

hj�1=2 ¼
0 if Dj�1=2 < Dmin or Dj�1=2 > Dmax;
ðDmax � Dj�1=2Þ=ðDmax � DminÞ otherwise:

�

Clearly, 06 h6 1. It is easy to let h have a non-linear dependence on D or to prescribe a range for D for

which h ¼ 1. We then use h to apportion the flux into diffusive and convective terms according to

Cl
j�1=2 ¼ �hj�1=2Dl�1

j�1=2dxf l
j�1=2 þ ð1� hj�1=2Þcl�1

j�1=2f
l
j�1=2: ð28Þ

There are many other ways to represent the flux used in a transport code, and within the choice (28) there is

wide latitude in the selection of Dmin and Dmax. Clearly, the D actually used in the transport code (in our

case, hj�1=2Dl�1
j�1=2) must be non-negative and bounded, whereas Dl�1

j�1=2 will go through infinity at an ex-

tremum of n (thus the need for a finite Dmax) and be locally negative should the flux be running locally up

hill; we also found empirically that limiting Dmax can improve the stability of the iterations within a time

step. In Section 3.1 and in Appendix A we present two other methods for ensuring a well-posed problem for
the linear diffusion-equation solver.

In Eq. (28) we have again used the concept of a zone-centered f . By introducing another zone-centered
coefficient, we write

f l
j�1=2 ¼ bj�1=2f

l
j�1 þ ð1� bj�1=2Þf l

j ; 06 b6 1:

The b coefficients allow us to guarantee necessary properties of the nodal values f l
j . Their choice is driven

by the desire to have an M-matrix which in this case requires that we load only non-negative elements on

the matrix diagonal and only non-positive contributions to the off-diagonals.

Ignoring the boundary term, a straightforward integration by parts of the flux term gives (see definition

of / above Eq. (14)),Z
dx/jðxÞoxC ¼ �

Z
dx/0

jC ¼ �Cj�1=2 þ Cjþ1=2:

According to Eq. (28), the diffusive part of �Cj�1=2 is

ðhDl�1=hÞj�1=2ðf l
j � f l

j�1Þ;

while the convective part of �Cj�1=2 is

�ð1� hj�1=2Þcl�1
j�1=2 bj�1=2f

l
j�1

h
þ ð1� bj�1=2Þf l

j

i
:

This leads to the proper choice for b. If the flux is purely diffusive (h ¼ 1), then b is of no consequence. If the
flux is purely convective, then

if h ¼ 0; b ¼ 1 if cP 0;
0 if c < 0:

�

This choice is equivalent to implicit upwind differencing. If 0 < h < 1, then b is allowed to creep towards 1/2
from below (above) if c < ðP Þ0. The creep is not allowed to go to such a level that when the diffusive and
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convective terms are combined, they create a positive contribution to the off-diagonals or a negative

contribution to the diagonal. This assures an M-matrix; it is tridiagonal but no longer symmetric. If

M ¼ LU is the decomposition and y P 0, by examining the elements of L and U , it is easy show that the

solution of

Mf l ¼ y

satisfies f l P 0.

3.1. Formulation of non-local coupling test problem

Here we derive the coupled equations used for the non-local coupling studies. We note that Eqs. (17)

lead to an evolution of the averaged quantities hNpi and hfi. (This is in spite of the implication in the
derivation [6] that Np and f are perturbations from averaged quantities.) We shall work with a modified

version of Eqs. (17) in which there is no evolution of hfi, but hNpi still evolves. This modified system
provides a numerical test of our coupling algorithm, as it can be solved in two ways: (1) direct solution

using the turbulence code HAWCX; and (2) a coupled solution, in which Eq. (17) is further modified so
that neither hNpi nor hfi evolves, and the equation for the evolution of hNpi is solved by the transport
code. Analogously to Eq. (19), we introduce the averaged and fluctuating parts of the potential and

velocity:

/ðx; y; tÞ ¼ h/i þ ~//;

fðx; y; tÞ ¼ hfi þ ~ff;

where the averages h�i, defined in Eq. (20), are functions of x and t.
Similarly, Eqs. (17) are themselves separated into two systems, one for the averaged variables n, h/i, and

hfi, and another for the fluctuating variables ~nn, ~//, and ~ff. The two systems are coupled in a manner similar
to that of the local case. ‘‘Fluxes’’ of the averaged variables are determined by ~nn and ~// while certain co-
efficients of the fluctuating system depend on gradients of n.
In Eq. (17), we replace the density diffusion term by ox½moxðNp � nÞ
, where mðxÞ is defined below, and we

set l ¼ 0. (The HAWCX code has intrinsic dissipation in its vorticity equation due to its differencing

scheme.) Our modified version of Eqs. (17), which does not evolve hfi, is then given by subtracting the
averaged f equation from the f equation itself and substituting ~ff ! f, to yield

otf þr � ðvfÞ � oxhvxfi ¼ að/ � ~nnÞ; ð29Þ

otNp þr � ðvNpÞ ¼ að/ � NpÞ � joy/ þ ox½moxðNp � nÞ
: ð30Þ

In writing Eq. (29), we assumed the initial condition h/i ¼ 0; Eq. (29) implies that hfi and h/i are both zero
for all time, and then v ¼ ~vv.
If the equation for Np is averaged, one obtains (recall definitions of Np; n and ~nn, Eqs. (18) and (19)):

otn þ oxC ¼ �an with C ¼ �h~nnoy/i: ð31Þ

Subtracting this from the equation for Np yields the evolutionary equation for ~nn:

ot~nn þr � ðv~nnÞ þ oxh~nnoy/i ¼ að/ � ~nnÞ � ðj � oxnÞoy/ þ oxðmox~nnÞ: ð32Þ

In Eq. (31), the flux is an average of the product of fluctuating variables. In Eq. (32), oxn modifies the
coefficient responsible for the growth of the turbulence, i.e.,

416 A.I. Shestakov et al. / Journal of Computational Physics 185 (2003) 399–426



j ! j0 � j � oxn: ð33Þ

Eq. (31) is the desired transport equation; its flux cannot be assumed to be of opposite sign to rn, either
initially or at saturation. For small times, n � 0, and C tends to move down the gradient of Nb, which, over

a large portion of the domain, need not be in the same direction as the gradient of n. As a further com-
plication, inasmuch as n is not a physical density it can take on both positive and negative values. Nev-
ertheless, we show below that our technique correctly computes its saturated value.

The validation consists of comparing the saturated value of n obtained by two methods, one the stand-
alone or S way, another the coupled or C way. For the former, we run HAWCX by itself (solving Eqs. (29)

and (30)), wait until the results saturate, and compute n. In the C way, HAWCX solves Eqs. (29) and (32),
i.e., without evolving n. Instead, n evolves via Eq. (31) which is advanced by the scheme described in the
previous section. Each iteration of the transport requires a time advancement of Eqs. (29) and (32) where j0

is modified by the transport according to Eq. (33).

Since the ‘‘density’’ n violates the positivity requirement of our transport solver, instead of Eq. (31) we
solve an equivalent equation in which n is replaced by another variable which remains positive. For ex-
ample, if we expect n to be bounded from below for all t,

nðx; tÞ > �d; d > 0;

then we might choose to define

nþðx; tÞ ¼ nðx; tÞ þ d

and obtain the modified transport equation,

otnþ þ oxC ¼ aðd � nþÞ: ð34Þ

Since oxnþ ¼ oxn; j0 and C are unchanged. In terms of nþ, the physical density N ¼ Nb � ð1þ ~nn þ nþ � dÞ.
This choice, however, does not address the problem of flux running up the gradient of n. Hence, we

define an alternate change of variables in order to be able to express C as a Fick�s law, i.e., as C ¼ �DrNþ

with DP 0. Recall that in the original derivation of Eqs. (17) [6], the total density N is expressed as a
product of a fixed background and a perturbation about that background, as in Eq. (18):

Nðx; y; tÞ ¼ NbðxÞð1þ Npðx; y; tÞÞ:

The derivation assumes jNpj  1. However, in order to obtain a stringent numerical test, we choose an

NbðxÞ that leads to an Np that violates this condition. In order to recover both a positive density and a

positive D, we define a new density Nþ analogously to nþ above. Then, using Eq. (18), n is given by

nðx; tÞ ¼ Nþðx; tÞ � d
NbðxÞ

� 1; where Nþ ¼ hNðx; y; tÞi þ d: ð35Þ

This leads to the second modified transport equation,

1

NbðxÞ
otNþ þ oxC ¼ a þ a

NbðxÞ
ðd � NþÞ: ð36Þ

For Eq. (36), at least in the early stages, we expect Fick�s law to hold. That is, for the same C as before,
�C=oxNþ P 0. This modification is an example of adding a simple, constant in space and time, alias

function to the density. Later in time, if the flux runs uphill, we treat C by the convective/diffusive split of

Eq. (28). An alternate way of ensuring that D is positive, which can be applied to either Eq. (34) or (36), is

to add a d which is a function of x, as described in Appendix A .
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Finally, we discuss the boundary conditions and the dissipative function m. In HAWCX, the ‘‘hard-
wired’’ conditions are

f;/; ~nn ¼ 0 at x ¼ 0; Lx

and periodicity in y. In addition, HAWCX�s difference scheme requires ghost-point values. If ()1) is the
ghost-point index to the left of x ¼ 0, HAWCX sets

f�1 ¼ �f1;

where f denotes f, /, or ~nn. For the transport, the boundary conditions depend on which of Eqs. (34) or (36)
we use. In either case, we fix the density at the ends. For Eq. (34) we set nþ ¼ d at x ¼ 0; Lx, while for
Eq. (36) we set,

Nþð0; tÞ ¼ Nbð0Þ þ d and NþðLx; tÞ ¼ NbðLxÞ þ d:

The dissipative function m is introduced to avoid complications at the boundaries; see Section 3.2. Its
effect is to add diffusion at the endpoints but not disturb the evolution in the interior. In the examples,

mðxÞ ¼ m0½expð�x2=D2
mÞ þ expð�ðx � LxÞ2=D2

mÞ
: ð37Þ

3.2. Numerical results

We compare results for the two ways of reaching a saturated state, the stand-alone or S way and the

coupled or C way – see Section 3.1. For the tests, we choose a background profile NbðxÞ and then let
the turbulence evolve to a saturated state. Two different profiles are used. The first is symmetric about the

middle of the domain, which creates an anti-symmetric flow. For the second profile, N 0
b < 0 throughout the

domain and consequently the average flow is to the right. In the S runs, HAWCX is run for many cycles

(time steps); frequently more than 10,000 are required to saturate. Saturation is checked by saving suc-

cessive averages. Typically, in the S runs, HAWCX is run for batches of 1000 cycles each. After each cycle,

the result is accumulated in a separate variable, and the batch average is obtained by dividing by 1000.

Sometimes the batch averages differ, even after saturation. This implies that waves with long periods are

still present. The ‘‘saturated’’ variable displayed in the figures is either the total averaged density hNi or the
average of the perturbed part n.
When the S run saturates, it does so with respect to the fixed background Nb. For the C runs, the

fully implicit differencing scheme does not impose any stability restriction on Dt. In fact, setting Dt to
an arbitrarily large value reduces Eq. (26) to the desired discretization for the steady state. Since

HAWCX�s time step D~tt is usually <O(1), we set the transport time step Dt to 1010. This not only

allows us to compare the saturated states, but in some cases facilitates reaching the state ‘‘faster’’,

where the efficiency is measured in the number of cycles that HAWCX requires to saturate. In the C

runs, the transport computes n while HAWCX evolves ~nn. We believe the time scale separation to

depend on the ratio of the original gradient scale of Nb to the normalizing distance qs (defined below

Eq. (17)). In the C runs, we usually iterate for 2000 cycles, i.e., call HAWCX 2000 times, each time
asking it to advance one D~tt. If 2000 cycles are not enough for saturation, we call it again for another
2000 cycles, etc. This allows us to quote a time or equivalently an iteration number for the compar-

isons. For example, we can compare an S-run average of 1000 cycles after cycle 10,000 with a C-run

average after cycle 4000.

In the runs we use Nx ¼ 60 as the number of transport grid points. Hence, the transport, which computes

node-centered values and has Dirichlet boundary conditions, has Nx unknowns. Since HAWCX returns a

flux, which for the transport is zone centered, it solves its equations on a staggered grid. Since Nx þ 1 fluxes
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are required, HAWCX has that many unknown grid points in the x direction while it uses Nx þ 4 points in

the (periodic) y direction. The plots use the grid index for the abscissa.
The primary effect of the saturated state is to flatten the total density hNi. This is evident by comparing

Nþ � d with Nb. The m function acts as a diffusion coefficient for ~nn and allows the saturated profiles to be less
dependent on HAWCX�s hard-wired boundary conditions. Simulations with m ¼ 0 do not saturate easily.

The locations of the large gradients of Nþ, which initially coincide with those of Nb, later shift toward the

boundaries. Setting m large near the endpoints relieves the difficulties. The function is initialized as follows:
recalling Eq. (37), we set m0 ¼ 5 and Dm ¼ 5Lx=Nx. Hence, 5 (10) grid points away from the boundary, m
decreases by a factor of e (e4).
For the first comparison, we choose Nb symmetric about the middle of the domain; see Fig. 8, curve 1.

The smooth transition between the ends where Nb ¼ 0:5 and the middle where Nb ¼ 1:0 is a cosine. Note
that Nb has regions where it is completely flat. For this problem we set

aðxÞ ¼ 10�4=NbðxÞ and jðxÞ ¼ N 0
bðxÞ=NbðxÞ:

The physical domain is,

Lx ¼ Ly ¼ 20p:

The average flow is anti-symmetric about Lx=2. Curves 2 and 3 of Fig. 8 are the C results for Nþ after cycle

200 and 2200, respectively. Curve 2 is the instantaneous result and curve 3 is the average over the previous

2000 cycles. (The average after only 200 cycles – which is not shown – lies much higher than the instan-

taneous result since the former contains remnants of the initial, low-amplitude transients.) We apply

Eq. (12) with N ¼ 500 to compute the average. The close agreement between curves 2 and 3 shows that

the transport saturates after only 200 calls to HAWCX. For this example, we use Eq. (36) to model the

transport. Since there is no threat of a negative N , we set d ¼ 0.

The y-averages of the perturbed part, n and �nn, i.e., the instantaneous and time-averaged density per-
turbations, are compared in Fig. 9. Curves 1 and 2 display the C results. Those curves respectively cor-

respond to curves 2 and 3 of Fig. 8. Curve 3 of Fig. 9 is the S result after cycle 20,000 (average using Eq. (11)

over cycles 19,000–20,000). Except for the slight discrepancy near j ¼ 10, the runs agree. However, the S

run takes a remarkably long time to saturate. In Fig. 10, curves 1, 2, 3 and 4, we present the S averages after

Fig. 8. Densities vs. x-grid index for coupled HAWCX-transport simulations. Curve 1 is the input background density Nb. Curve 2 is

the instantaneous result for Nþ after 200 cycles; curve 3 is the average (over 2000 cycles) of Nþ after 2200 cycles. Alias density d ¼ 0.
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cycle 1000, 10,000, 15,000, and 20,000. Note how long it takes the S runs to saturate fully in the middle of

the domain.

The comparisons are surprisingly good in light of the difficulty the transport encounters when computing

the effective diffusion coefficient, Eq. (27), in the flat regions where dxf ¼ 0.

In the second example we choose Nb as follows:

NbðxÞ ¼ 1:� N1 tanh
x � Lx=2

DN
; ð38Þ

where N1 ¼ 0:8, DN ¼ 20:0, and Lx ¼ 80p.
For this problem we set

aðxÞ ¼ 2:5� 10�5=NbðxÞ and jðxÞ ¼ N 0
bðxÞ=NbðxÞ:

Fig. 9. Instantaneous and time-averaged coupled-simulation results (curves 1 and 2, respectively) for the density perturbation com-

pared to the result of a stand-alone HAWCX simulation (curve 3), plotted vs. x-grid index.

Fig. 10. Stand-alone HAWCX simulation results for same problem as Fig. 9. Curves 1, 2, 3, and 4 are averages taken after cycles 1000,

10,000, 15,000, and 20,000, respectively, plotted vs. x-grid index.
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We present C results for two different versions of the transport equation, Eqs. (36) and (34). Results for Eq.

(36) are subscripted by 1, for Eq. (34) subscripted by 2. When using Eq. (36), we set d ¼ 1, while for Eq.

(34), we use d ¼ 2. Thus, the subscript denotes the constant required to keep the variable positive. In the

figures, d is subtracted from the results.

In Fig. 11, curve 1, we display NbðxÞ; curves 2, 3, and 4 are averages of Nþ
1 � d after 8200, 10,200, and

12,200 cycles. The discrepancy between the curves reflects the statistical noise-level of the saturated state.

The saturated state is peculiar. The steep gradient of Nþ
1 undergoes a sign reversal in the middle of the

domain. Inspection of the numerical results shows that the average flux is positive everywhere. This
problem takes a long time to saturate. The early perturbations occur in the central region where Nb has

the sharp gradient. As in the previous problem, the initial tendency is to flatten Nb by moving mass from

the high- to the low-density side. However, the flattening of the central region broadens the total profile

and extends the perturbation out to the boundaries. At the boundaries (especially the left one) the

growing perturbation conflicts with the imposed boundary condition, n ¼ 0. The introduction of dissi-

pation, Eq. (37), alleviates the problem by keeping the perturbation away from the boundary. We

speculate that this state is not physical but instead indicates usage of Eqs. (17) in an inappropriate re-

gime. Indeed, the total density is occasionally negative. In Fig. 12 we compare the y-averages of the
perturbations. Curves 1 and 2 correspond to nþ1 ; they are derived from curves 2 and 3 of Fig. 11. Curves

3 and 4 of Fig. 12 correspond to nþ2 . There is some disagreement, but all curves share the salient features
of the saturated state: it moves a great deal of density from the left half of the domain to the right. Fig.

13 compares the final results. Curve 1 displays nþ1 � d after 20,000 cycles while curve 2 displays nþ2 � d
after 20,000. Curve 3 is the S result after 30,000 cycles averaged over the prior 1000 cycles. The S-

simulation was nearing but had not yet achieved saturation at 30,000 cycles (an S-run differing in

computational as opposed to physical parameters, which shows the approach to saturation, is presented

in Appendix A).
The good comparison in Fig. 13 both demonstrates the numerical advantage and validates the ro-

bustness of our technique. This is a hard problem. Non-local effects are strong, as indicated by the fact

that the turbulent eddy size is comparable to the background gradient scale-length. In part of the do-

main, the flux flows up the gradient of both the total density Nþ and the perturbation n. Nevertheless,
our method is robust enough to find the saturated value. Its implicit nature is not restricted by the size of

Dt.

Fig. 11. Coupled-simulation results for input background density Nb (curve 1). Curves 2, 3, and 4 are averages of Nþ
1 � d ¼ hNi (see

Eq. (35)) after 8200, 10,200, and 12,200 cycles. The curves are plotted vs. x-grid index.
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4. Conclusions

We have described a very promising method of coupling transport and turbulence, which we illustrate

with an application to the 2D Hasegawa–Wakatani model equations for plasma turbulence. We have

augmented the basic scheme with two methods, about equally successful, for dealing with locally anti-

diffusive behavior. Both local and global implementations of the coupling work well. For the problems

where there is at least a moderate separation of spatial scales between the fluctuations and the background,
the coupled approach achieves significant savings over the comparison stand-alone simulations, whether or

not global effects emerge, while finding, to within expected statistical variations, the same averaged profiles.

We note that for the parameters used in our simulations and for parameters of typical interest for

our motivating application (drift-wave-type turbulence in tokamaks), the global implementation of the

Fig. 13. Solutions at the final cycles of the simulations of Figs. 11 and 12. Curves 1 and 2 display nþ1 � d and nþ2 � d after 20,000 cycles.
Curve 3 is the stand-alone result, just approaching saturation at 30,000 cycles. The curves are plotted vs. x-grid index.

Fig. 12. Comparison of coupled-simulation results for two formulations of the transport equations. Curves 1 and 2 plot nþ1 � d, derived
fromcurves 2 and 3 of Fig. 11.Curves 3 and 4 are the corresponding results for nþ2 � d, the solution ofEq. (34). The curves are plotted vs. x-
grid index.
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coupling (where a single large turbulence code with the same radial (x) domain as the transport code is
used) is more efficient than the local one (where separate copies of the turbulence code are used at each

transport mesh-point). This will be true (assuming a linear scaling in computational time with the number

of radial mesh points for the turbulence codes) so long as Ltr=Lfluc < N tr
x � N fluc local. Here Ltr and Lfluc are

the background and fluctuation spatial scales respectively; N tr
x is the number of radial mesh points for the

transport code; and N fluc local the number of eddies in the radial direction per local turbulence simulation

necessary for convergence.

To do couplings for physical problems of the greatest interest (including the application to tokamaks,
which inspired this work), we have to address the coupling of multiple fields. Here off-diagonal contri-

butions of the gradients to the fluxes, which can be significant and of either sign, and whose analytic form in

general will not be known, can have a serious impact on the stability of the method. Stability of the

coupling algorithm near critical gradients (that is, values of the gradients at which the turbulence-driven

diffusion coefficient vanishes) is also a potential issue.

Encouraged by the results obtained and presented in this paper (the work was carried out in 1995), we

proceeded to couple a ‘‘full-physics’’ tokamak-core transport code to what was then the state-of-the-art 3D

tokamak-core local fluid turbulence code, GRYFFIN [15,2]. Details of the two codes� preparation and
communication, modifications to the algorithms presented in this paper, and results are given in [16]. The

conclusions of the work, though preliminary, included: (1) few refinements of the schemes presented in the

present paper were needed; (2) an extension of the coupling to two fields, electron and ion temperatures,

succeeded (although normally tightly coupled by drag, we simulated cases with a significant difference

driven by the large ion heat-flux returned by GRYFFIN); (3) global coupling is probably more robust than

local, because neighboring regions in a global code influence each other directly and so tend to return self-

limited profile gradients.

Appendix A. Adaptive alias

In this appendix we describe an alternate method of handling the problem of fluxes running locally up

hill (or other situations where the diffusion coefficient locally is outside acceptable bounds). The basic

approach is to add an ‘‘alias density’’ nal to the density variable of interest, n, in such a way that the flux C
runs down the hill of the total density ntot ¼ n þ nal with a diffusion coefficient D ¼ �C=oxntot which is
within the acceptable bounds.

The inspiration for this approach comes from the definition of the various densities in the non-local

Hasegawa–Wakatani turbulence model of Section 3.1. We recall that the physical density N is related
to the Hasegawa–Wakatani density variable Np by the relation N ¼ Nbð1þ NpÞ. From the examples

shown in Section 3.2, it is apparent that even for relatively benign situations where the flux flows

down the gradient of N , it can flow up local gradients of Np. If we were to construct a ‘‘transport

code’’ for Np we would encounter the ‘‘flux running up hill’’ problem, whereas the multiplication by Nb

and the addition of the fixed density Nb results in a density whose gradient more closely defines the

direction of C.
The alias procedure would be simple if we had some reason to a priori know the direction of the flux; we

could just add to the physical density a fixed alias function whose gradient is everywhere opposite to the
expected flux, and whose magnitude is so large that the sum of the physical and alias gradients also has

the property that the flux runs down the hill of the total gradient. While, for transport in a tokamak, the

transport of particles is typically down a density gradient from the center to the edge, this need not always

be the case (for example, if there is a hollow density profile and the flux remains outward). To account for

this possibility, we introduce an alias function which can change at every iteration. The alias is defined by

the following procedure.
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Starting from the latest estimate of the turbulent flux C and of the total density ntot (which is just the
actual density n being evolved by the transport equation if an alias density has not been previously defined)
we define an initial array of diffusion coefficients by Dj ¼ �Cj=ðdntot=dxÞj. Some of the members of this
array might be outside of the acceptable range of diffusion coefficients. Hence, we define a mapping that

takes each value of D to a new value Dnew which lies within the acceptable range of diffusion coefficients.

For example, if we demand that Dmin < Dnew < Dmax, then a reasonable choice for the mapping is given by

Dnew ¼
Dmin; jDj6Dmin;

jDj; Dmin < jDj < Dmax;

Dmax; jDjPDmax:

8><
>: ðA:1Þ

We then define a new density-gradient array ðdnnew=dxÞj from the new diffusion coefficient,

ðdnnew=dxÞj ¼ �Cj=Dnewj ðA:2Þ

and hence a new density variable which follows from the relation

nnewj ¼ nnewj�1 � DxCj=Dnewj ðA:3Þ

This relation may be used to integrate from either end of the spatial domain; we alternate directions in

succeeding iterations in order to help ensure the stability of the aliasing procedure (avoiding a run-away

alias). In either case, we start the integration by assuming that nnew equals the old value at the starting end.
In a similar vein, at the end of each sweep, we add a constant to the array of nnew values to make the
minimum nnew equal a specified small value. Once nnew is known, the new alias function follows from

nal ¼ nnew � n (and n is unchanged during the re-definition of the alias function).
We performed initial tests of the adaptive alias procedure, applied directly to the Hasegawa–Wakatani

density variable Np (relative to which the flux flows up hill over a significant portion of the domain) and

using the Pad�ee Approximant Eq. (23) for the flux. We used Eq. (A.1) for the diffusion coefficient mapping.
These revealed that the procedure yields converged solutions over very wide, but not unbounded, ranges of

Dmin and Dmax, with little difference in the convergence rate. Interestingly, this was true even for

Dmin ¼ Dmax, i.e., mapping onto a constant diffusion coefficient. This experience carried over to running

with fluxes from the non-local turbulence code HAWCX, though with the turbulence code there may be

some moderate improvement in convergence when the amount of alias redefinition required is reduced: our
results for the hyperbolic-tangent test problem, Eq. (38) with N1 ¼ 0:8, appeared better converged when we
took as an initial guess nal ¼ Nb rather than nal ¼ 0. In Fig. 14 we show a comparison of the adaptive-alias

coupled solution for hNpi with that obtained from direct solution, averaged over 1000 iterations, of the

Hasegawa–Wakatani equations, for the hyperbolic-tangent background model with N1 ¼ 0:8. The other
parameters are: the window size N ¼ 400 – see Eqs. (11) and (12), Dmax ¼ 2, Dmin ¼ 1� 10�14,

Lx ¼ Ly ¼ 80p, DN (the scale length for variation of the background density in Eq. (38)) ¼ 20, and

aðxÞ ¼ a0=Nb with a0 ¼ 0:000025. As noted in Section 3.2, this test problem displays significantly non-local

behavior, including flux running up the gradient of ntot in some places. Yet Fig. 14 demonstrates that the
adaptive alias procedure yields a reasonably converged density profile by 2500 iterations, which agrees

reasonably well with the stand-alone solution after about 30,000 time steps; these results, and the time

savings, are comparable to those achieved with the convective–diffusive split technique discussed in the text.

Again we remark that a larger savings could have been demonstrated by picking a smaller j, but then the
turbulent eddies would have been a smaller fraction of the gradient scale length and thus the simulation less

challenging from the standpoint of non-local coupling. Fig. 15 shows the shape of the final alias density nal,
which in this case is similar to the initial guess nal ¼ Nb. For a smart choice of initial alias, the alias is

typically little modified by the adaptive alias procedure. For other choices, it can be substantially modified.
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The final aliases corresponding to different initial choices can look completely different; but they yield the

same physical density, within statistical limits, assuming both cases converge.

We have also applied the adaptive-alias procedure with hNi rather than n used as the dependent variable
in the transport equation; for our strongly non-local test problem, there was little difference in performance.
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